

БЛОК ИНДИКАЦИИ Т42

Руководство по эксплуатации

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА БЛОКА ИНДИКАЦИИ	5
1.1 Назначение	5
1.2 Устройство и принцип работы	5
1.3 Технические характеристики	6
2 ПОДКЛЮЧЕНИЕ БЛОКОВ ИНДИКАЦИИ Т42 РАЗЛИЧНЫХ МОДИФИКАЦИЙ	11
2.1 Подключение к вращающимся датчикам M40, M40H, M40A, M20C, M25, M26, M27	11
2.2 Подключение к невращающимся датчикам МА20, МА20Н, МА20В	11
2.3 Модификация T42/USB	11
2.4 Модификация T42/Ethernet	13
2.5 Модификация T42/CAN	13
2.6 Модификации T42/RS-232, T42/RS-485	13
2.7 Модификации T42/±5(10)B, T42/10±5 кГц, T42/4…20 мА активный	14
2.8 Модификация Т42/4…20 мА пассивный	15
2.9 Модификации Т42 с комбинацией и цифрового и аналогового выходов	16
2.10 Подключение исполнительного устройства	17
3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	17
3.1 Порядок работы	17
3.2 Работа с меню блока индикации Т42	18
3.2.1 Параметры индикатора	18
3.2.2 Режим «КАЛИБРОВКА»	19
4 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	19
5 УТИЛИЗАЦИЯ	19
6 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ	19
7 ОБОЗНАЧЕНИЕ МОДИФИКАЦИЙ	22

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления с устройством, принципом действия и правилами использования блока индикации Т42 и его модификаций и удостоверяет гарантированные предприятием-изготовителем параметры и технические характеристики.

ВНИМАНИЕ! Перед использованием блока индикации Т42 изучите настоящее руководство по эксплуатации.

Рис. 1 – Внешний вид блока индикации Т42

1 ОПИСАНИЕ И РАБОТА БЛОКА ИНДИКАЦИИ

1.1 Назначение

Блок индикации Т42 (далее «блок индикации») предназначен для работы в составе измерителя крутящего момента силы типа «М» для отображения измеряемых величин крутящего момента силы, частоты вращения, определения величины передаваемой датчиком крутящего момента механической мощности. Блок индикации может так же работать с иными датчиками, например, датчиками силоизмерительными СТ, имеющими совместимый с датчиками крутящего момента интерфейс. Распознавание типа датчика, его характеристик, измеряемых физических величин происходит автоматически.

Блок индикации также отображает дополнительную информацию: температуру датчика (справочная информация), его идентификационный (заводской) номер, тип датчика и дату его калибровки.

Блок индикации может включать в себя двухуровневое реле, позволяющее управлять внешним исполнительным устройством.

1.2 Устройство и принцип работы

Общий вид блока индикации показан на рис. 1. Блок индикации выполнен в корпусе из алюминиевого сплава, который может снабжен фланцами с крепежными отверстиями, либо креплением на DINрейку. Габаритные и установочные размеры корпусов показаны на рисунках 2 и 3.

В верхней части лицевой панели расположен цифровой двухрядный жидкокристаллический индикатор. Под ним расположены три кнопки управления индикатором. На нижнем торце прибора расположены разъем для подключения датчика крутящего момента силы и дополнительные интерфейсные разъемы.

Блок индикации получает информацию от датчика, декодирует ее и преобразует в форму, необходимую для управления жидкокристаллическим индикатором.

- В зависимости от выходного интерфейса доступны следующие модификации блока индикации T42:
 - с интерфейсом USB2.0;
 - с интерфейсом Virtual COM-port (USB-CDC);
 - с интерфейсом RS-232
 - с интерфейсом RS-485;
 - с интерфейсом CAN2.0B;
 - с интерфейсом Ethernet;
 - с аналоговым выходом (±5B, ±10B)
 - с активным токовым выходом 4...20 мА;
 - с пассивным токовым выходом 4...20 мА;
 - с частотным выходом 10±5кГц;

Доступны также модификации T42 с комбинацией двух выходных интерфейсов, например, RS-485 и 10±5кГц, RS-485 и ±5В и пр.

Обозначения модификаций приведены в разд. 7. Технические характеристики блоков индикации Т42, параметры выходных интерфейсов и параметры канала частоты вращения приведены в табл. 1. Параметры устойчивости к внешним воздействиям приведены в табл. 2.

1.3 Технические характеристики

Табл. 1 – Технические характеристики блока индикации T42

	1	
Протокол входного сигнала		TILKOM1
Амплитуда входного сигнала	В	5±20%
Скорость передачи данных	кбит/с	100
Гальваническая развязка между сигнальным входом и корпусом		+
устройства		
Параметры индикации	1	2 05 25
Размер знака жидкокристаллического индикатора Подсветка жидкокристаллического индикатора ¹⁾	MM	3,0×5,25 +
Разрядность индикации измеряемых физических величин,		
десятичных разрядов		4,5
Дискретность индикации измеряемой частоты вращения:		
до 1000 мин-1		0,1
свыше 1000 мин ⁻¹ Разрядность индикации измеряемой мощности, десятичных разрядов		1 4
Параметры встроенного реле ²⁾		4
Количество нормально-разомкнутых контактов встроенного реле для		
управления исполнительным устройством, не более	ШТ.	2
Напряжение питания исполнительного устройства, не более	В	60
Ток исполнительного устройства, не более	мА	300
Цифровой выход USB (WinUSB Device) 2)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM
Формат данных		float; fixed point
Цифровой выход USB-VCOM (USB-CDC, Virtual COM Port) 2)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM, MODBUS RTU
Формат данных		float; fixed point
Цифровой выход Ethernet ²⁾	,	
Интерфейс		10 / 100Base-TX
Скорость передачи данных	Мбит/с	10; 100
Транспортный уровень		TCP
Протокол передачи данных		TILKOM, MODBUS TCP
Формат данных		float; fixed point
Цифровой выход CAN ²⁾		
Интерфейс		CAN2.0B
Скорость передачи данных	кбит/с	125; 250; 500; 1000
Программируемый адрес на шине		+
Режим работы		пассивный; активный
Формат данных		float; fixed point
Цифровой выход RS-485 ²⁾		
Интерфейс		RS-485
Скорость передачи данных	бод	2 400 – 115 200
Протокол		MODBUS RTU
Проверка четности		+
Программируемый адрес на шине		+
Формат данных		float; fixed point

Аналоговый выход ±5 В (±10 В) ²⁾ Номинальное выходное напряжение при действии крутящего момента равного положительному верхнему пределу измерений отрицательному верхнему пределу измерений нулю	В	
момента равного положительному верхнему пределу измерений отрицательному верхнему пределу измерений	_	
положительному верхнему пределу измерений отрицательному верхнему пределу измерений	-	
отрицательному верхнему пределу измерений	R	5 (10)
	⊢ ט ⊢	+5 (+10)
нулю		-5 (-10)
•		0
Электрическое сопротивление нагрузки, не менее	кОм	10
Аналоговый выход 4…20 мА ²⁾		
Номинальный вытекающий ток при действии крутящего момента равного		
положительному верхнему пределу измерений	мА	20
отрицательному верхнему пределу измерений		4
нулю		12
Электрическое сопротивление нагрузки, не более ⁴⁾	Ом	100
Частотный выход 10±5 кГц (60±30 кГц, 120±60 кГц) ²⁾		
Номинальная выходная частота при действии крутящего момента равного		
положительному верхнему пределу измерений	кГц	15 (90) (180)
отрицательному верхнему пределу измерений		5 (30) (60)
нулю		10 (60) (120)
Амплитуда выходного напряжения (симметричный меандр)	В	5±1
Электрическое сопротивление нагрузки, не менее	кОм	10
Параметры канала частоты вращения дат	чика	
Импульсный выход 1 импульс / мин ⁻¹ (по умолчанию)		
Номинальное кол-во импульсов при частоте вращения равной		
нулю		0
N _{MAX} ³⁾		N _{MAX}
Электрическое сопротивление нагрузки, не менее	кОм	10
Амплитуда выходного напряжения (меандр)	В	3,3±0,5
Аналоговый выход 05 В (010 В) ²⁾		-,,-
Номинальное выходное напряжение при частоте вращения равной		
нулю	В	0
N _{MAX} ³⁾	-	5 (10)
Электрическое сопротивление нагрузки, не менее	кОм	10
Аналоговый выход 420 мА ²⁾	1	. •
Номинальный вытекающий ток при частоте вращения равной		
нулю	мА	4
N _{MAX} ³⁾	† ···· †	20
Электрическое сопротивление нагрузки активного токового выхода,	Ом	100

¹⁾ Для включения подсветки необходимо подать питание +5В через USB-разъем.
2) При заказе блока индикации с данной опцией.

Табл. 2 – Параметры устойчивости к климатическим и механическим внешним воздействиям

Диапазон температур окружающей среды	°C	0+40
Атмосферное давление	мм рт.ст.	630800
Относительная влажность, не более	%	95 при 30 °C
Степень защиты по ГОСТ 14254-96		IP40
Масса, не более	КГ	0,4

³⁾ По умолчанию N_{MAX} – максимально допустимая частота вращения подключенного датчика. При необходимости может изменяться в настройках блока индикации.

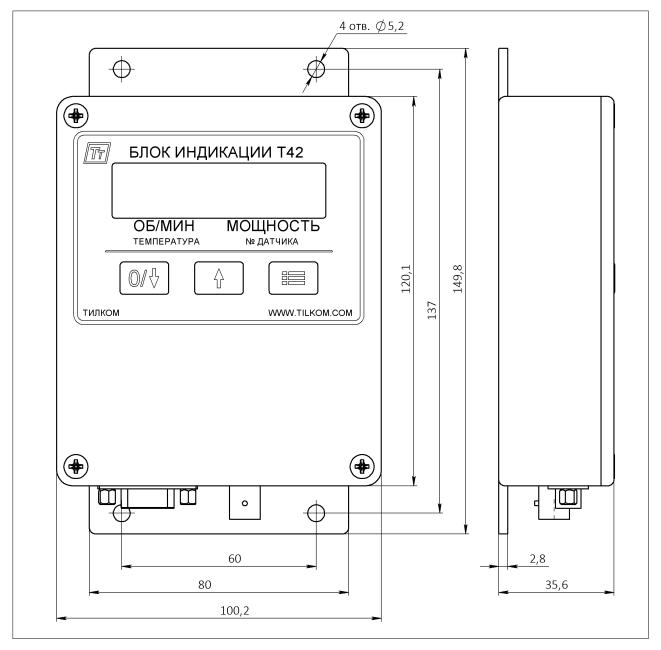


Рис. 2 – Блок индикации Т42. Габаритные и установочные размеры, мм

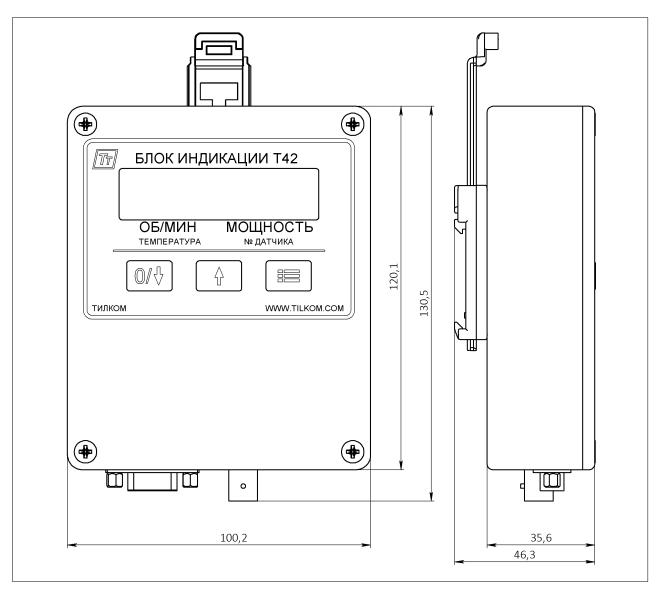
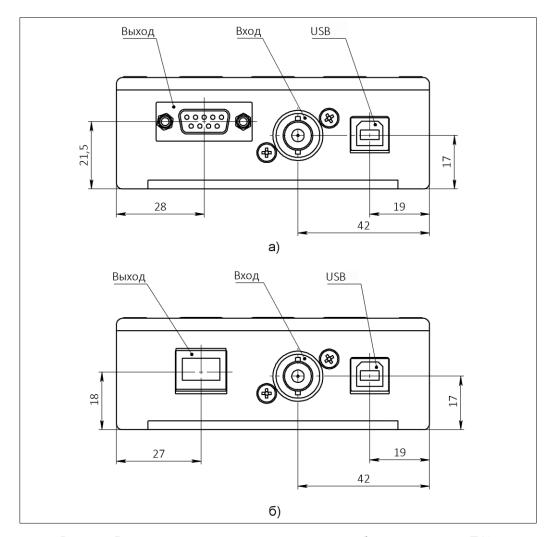



Рис. 3 – Блок индикации Т42 в корпусе с креплением на DIN-рейку. Размеры, мм

Рис. 4 – Расположение и назначение разъемов блока индикации Т42: а – для всех модификаций кроме Т42/Ethernet, б – для модификации Т42/Ethernet.

2 ПОДКЛЮЧЕНИЕ БЛОКОВ ИНДИКАЦИИ Т42 РАЗЛИЧНЫХ МОДИФИКАЦИЙ

2.1 Подключение к вращающимся датчикам М40, М40Н, М40А, М20С, М25, М26, М27.

Для подключения блока индикации Т42 к вращающемуся датчику используется сигнальный кабель из комплекта поставки датчика. Внешний вид кабеля и его условное обозначение показаны на рис. 5. Расположение разъемов на корпусе блока индикации показано на рис. 4. Разъем блока индикации «**ВХОД**» соединяется сигнальным кабелем с разъемом «**СИГНАЛ**» датчика. При этом резьбовой разъем кабеля соединяется с датчиком, байонетный – с декодером.

Рис. 5 – Сигнальный кабель: а – внешний вид, б – изображение на схемах

Электропитание вращающихся датчиков осуществляется отдельным блоком питания (через разъем датчика «ПИТАНИЕ»). Схема подключения блока индикации Т42 к вращающемуся датчику показана на рис. 6

ВНИМАНИЕ! Для включения подсветки экрана блока индикации необходимо подключить источник постоянного напряжения +5 В к разъему «**USB**».

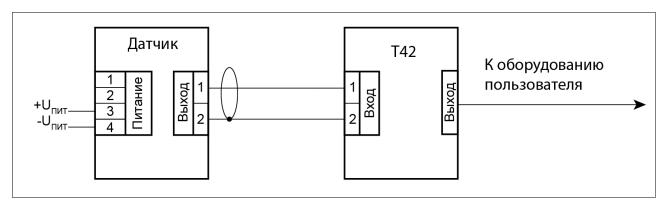


Рис. 6 – Типовая схема подключения блока индикации Т42 к вращающемуся датчику

2.2 Подключение к невращающимся датчикам МА20, МА20Н, МА20В

Невращающиеся датчики поставляются с инжектором E01 (рис. 7) и двумя сигнальными кабелями. Кабели имеют метки «1» и «2». Кабель «1» используется для подключения датчика к инжектору. Для подключения блока индикации кабель «2» длиной 0,5 м подключается резьбовым разъемом к разъему инжектора «ВЫХОД», байонетным разъемом к разъему «ВХОД» блока индикации. Схема подключения блока индикации к невращающемуся датчику показана на рис. 8.

2.3 Модификация T42/USB

К разъему «**BXOД**» блока индикации T42/USB подключается сигнальный кабель от датчика или инжектора, разъем «**USB**» для данной модификации является выходным и используется для подключения блока индикации к персональному компьютеру (ПК). Дальнейшая работа осуществляется с использованием ПО «Датчик крутящего момента» из комплекта поставки, либо ПО заказчика.

Порядок работы блока индикации совместно с персональным компьютером или контроллером изложен в документе «Протокол обмена информацией для декодеров четвертого поколения», который доступен после установки ПО «Датчик» (подробнее см. «Руководство оператора ПО «Датчик») и на сайте www.tilkom.com в разделе «Программное обеспечение».

Разъем «ВЫХОД» не задействован.

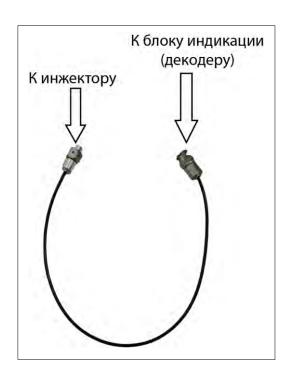


Рис. 7 – Инжектор E01(слева) и кабель «2» для подключения декодера к инжектору (справа)

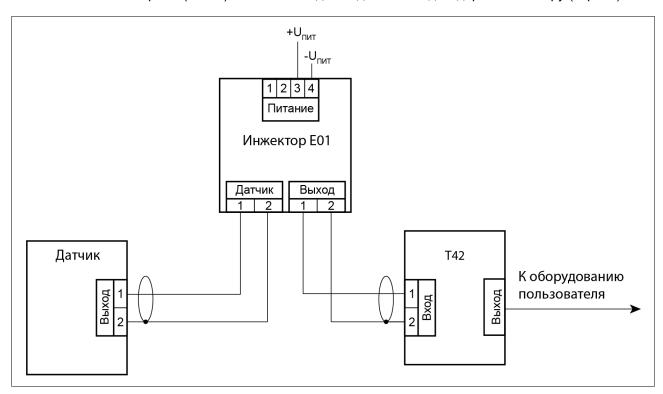


Рис. 8 – Типовая схема подключения блока индикации к невращающемуся датчику

2.4 Модификация T42/Ethernet

К разъему **«ВХОД»** блока индикации T42/Ethernet подключается сигнальный кабель от датчика или инжектора, разъем **«Ethernet»** является выходным и используется для подключения блока индикации к локальной сети. Дальнейшая работа осуществляется с использованием ПО «Датчик крутящего момента» из комплекта поставки, либо ПО заказчика.

Порядок работы блока индикации совместно с персональным компьютером или контроллером изложен в документе «Протокол обмена информацией для декодеров четвертого поколения», который доступен после установки ПО «Датчик» (подробнее см. «Руководство оператора ПО «Датчик») и на сайте www.tilkom.com в разделе «Программное обеспечение».

ВНИМАНИЕ! К разъему «**USB**» (на лицевой панели гравировка «ПИТАНИЕ») для данной модификации должен быть подключен источник постоянного напряжения +5 В для питания блока индикации.

2.5 Модификация T42/CAN

Блок индикации модификации T42/CAN имеет выходной разъем DB9-M. Назначение контактов разъема приведено в табл. 3.

Табл. 3 – Назначение контактов выходного разъема для модификации T42/CAN

	Контакт	CAN	Реле пределов*
	1		К1 верхний предел «+»
DB-9M	2	CAN_L	
	3		K2 верхний предел «-»
1 2 3 4 5	4	GND (CAN)	
6 7 8 9	5	GND	
	6		
	7	CAN_H	
	8		К3 нижний предел «+»
	9		K4 нижний предел «-»
* – Контакты залействованы при заказе б			

^{* –} Контакты задействованы при заказе блока индикации с реле пределов.

2.6 Модификации T42/RS-232, T42/RS-485

К разъему «**BXOД**» блоков индикации T42/RS-485 и T42/RS-232 подключается сигнальный кабель от датчика или инжектора. К разъему «**USB**» (на лицевой панели гравировка «**ПОДСВЕТКА**») может быть подключен источник постоянного напряжения +5 В для включения подсветки экрана.

Назначение контактов выходного разъема для модификации T42/RS-485 приведено в табл. 4.

Табл. 4 — Назначение контактов выходного разъема для модификации T42/RS-485

	Контакт	RS-485	Реле пределов*
	1	GND (общий)	
DB-9F	2		К1 верхний предел «+»
	3		K2 верхний предел «
(5 4 3 2 1)	4		
	5	B(D-)	
	6		К3 нижний предел «+»
	7		K4 нижний предел «-»
	8		
	9	A(D+)	

Назначение контактов выходного разъема для модификации **T42/RS-232** приведено в табл. 5.

Табл. 5 – Назначение контактов выходного разъема для модификации T42/RS-232

	Контакт	RS-232	Реле пределов*
	1		К1 верхний предел «+»
DB-9F	2	Transmit	
	3	Receive	
(5 4 3 2 1)	4		K2 верхний предел «-»
	5	GND (общий)	
	6		
	7	RTS	
	8		К3 нижний предел «+»
	9		K4 нижний предел «-»

2.7 Модификации T42/±5(10)B, T42/10±5 кГц¹, T42/4...20 мА активный

К разъему «**BXOД**» блоков индикации модификаций T42/±5B, T42/±10B, T42/10±5 кГц, T42/4...20 мА активный подключается сигнальный кабель от датчика или инжектора.

К разъему «**USB**» (на лицевой панели гравировка «**ПОДСВЕТКА**») может быть подключен источник постоянного напряжения +5 В для включения подсветки экрана.

ВНИМАНИЕ! К разъему «**USB**» (на лицевой панели гравировка «ПИТАНИЕ») для модификации **Т42/4...20 мА** должен быть подключен источник постоянного напряжения +5 В для питания блока индикации.

К разъему «**ВЫХОД**» подключается регистрирующее устройство. Назначение контактов выходного разъема приведено в табл. 6.

Табл. 6 – Назначение контактов выходного разъема для модификаций T42/±5(10)B, T42/10±5 кГц, T42/4...20 мА активный

	Контакт	Выходной канал	Реле пределов*
	1	GND (общий)	
DB-9F	2		К1 верхний предел «+»
	3		K2 верхний предел «–»
(5 4 3 2 1)	4	крутящий момент	
	5		
	6		К3 нижний предел «+»
	7		K4 нижний предел «-»
	8	обороты	
	9		
* – Контакты задействованы	при заказе	е блока индикации с реле пред	елов.

Схемы подключения регистрирующего устройства к блокам индикации с выходным сигналом канала частоты вращения 0...10 В и имп/об показаны на рис. 9.

Для блоков индикации с выходным сигналом 4...20 мА и по каналу крутящего момента, и по каналу частоты вращения применяется схема подключения показанная на рис. 10.

ВНИМАНИЕ! Подключение внешнего источника питания к активному выходу 4...20 мА **НЕ ДОПУСКАЕТСЯ!**

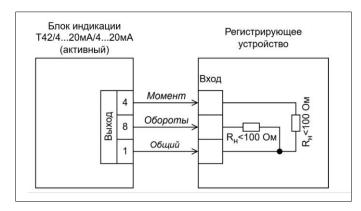



Рис. 9 – Схемы подключения регистрирующего устройства к блокам индикации

_

¹ Доступны также варианты частотного выхода 60±30 кГц и 120±60 кГц.

Рис. 10 — Схема подключения регистрирующего устройства к блоку индикации с двумя выходными каналами 4...20 мА

2.8 Модификация Т42/4...20 мА пассивный

Выходные каналы (крутящего момента и оборотов) блоков индикации данной модификации реализованы по принципу пассивной токовой петли.

К разъему «**BXOД**» блоков индикации данной модификации подключается сигнальный кабель от датчика или инжектора.

К разъему «**USB**» (на лицевой панели гравировка «**ПОДСВЕТКА**») может быть подключен источник постоянного напряжения +5 В для включения подсветки экрана.

К разъему «**ВЫХОД**» подключается регистрирующее устройство. Назначение контактов выходного разъема приведено в табл. 7.

Напряжение U_G источника питания БП (рис. 11) пассивной токовой петли выбирается из условий:

$$U_G \ge (0.025 \cdot R_H + 7) B$$

 $7.5 \le U_G \le 30 B$

где R_н – входное сопротивление токового канала измерительного устройства, Ом.

Соблюдение полярности подключения токовой петли к блоку индикации не требуется.

Блок индикации соединяется с датчиком (или инжектором) коаксиальным кабелем с волновым сопротивлением 50 Ом.

При протяженности линии менее 5 м возможно подключение нескольких регистрирующих устройств без согласования линии.

При длине линии более 5 и менее 10 м – порядок подключения устройств рекомендуется согласовать с производителем оборудования.

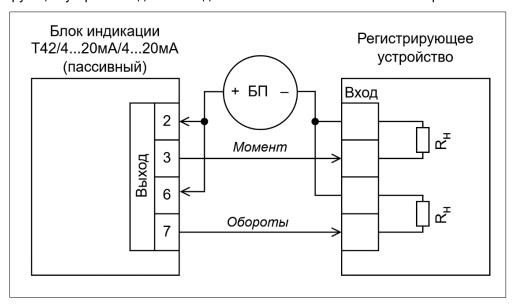

При длине сигнального кабеля свыше 10 м необходимо согласование волнового сопротивления кабеля, для чего параллельно входным контактам блока индикации подсоединить резистор с сопротивлением 68 Ом.

Табл. 7 – Назначение контактов выходного разъема для модификации Т42/4...20 мА пассивный

	Контакт	420 мА пассивный	Реле пределов*
	1		
DB-9F	2	Момент 1	
	3	Момент 2	
(5 4 3 2 1)	4		К1 верхний предел «+»
	5		K2 верхний предел «–»
	6	Обороты 1	
	7	Обороты 2	
	8		К3 нижний предел «+»
	9		К4 нижний предел «–»

Контакты задействованы при заказе блока индикации с реле пределов.

Регистрирующее устройство должно подключаться по схеме показанной на рис. 11.

Рис. 11 — Схема подключения регистрирующего устройства к блоку индикации с пассивным токовым выходом

2.9 Модификации Т42 с комбинацией и цифрового и аналогового выходов

Цифровые выходы USB и RS-485 могут быть совмещены с аналоговым или частотным выходом. Если цифровой выход блока индикации – USB, то назначение контактов разъема «**ВЫХОД**» для модификаций ±5B, ±10B, 10±5 кГц, 4...20 мА активный соответствует табл. 6, а для пассивного токового выхода 4...20 мА – табл. 7. Разъем «**USB**» (на лицевой панели гравировка «**USB**») используется для подключения к компьютеру.

Если цифровой выход – RS-485, то назначение контактов разъема «**ВЫХОД**» соответствует табл. 8, а для пассивного токового выхода 4...20 мА – табл. 9. К разъему «**USB**» (на лицевой панели гравировка «**ПОДСВЕТКА**») может быть подключен источник постоянного напряжения +5 В для включения подсветки экрана.

Табл. 8 – Назначение контактов выходного разъема для модификаций T42/RS-485 с дополнительным выходом ±5B, ±10B, 10±5 кГц, 4...20 мА **активный**

	Контакт	Назначение
	1	GND (общий)*
DB-9F	2	
	3	
(5 4 3 2 1)	4	Момент
	5	B(D-)
	6	
	7	
	8	Обороты
	9	A(D+)

^{* –} контакт 1 электрически соединен с корпусом и является общим проводником и для цифрового, и для аналогового выхода.

Табл. 9 — Назначение контактов выходного разъема для модификации T42/RS-485 с дополнительным выходом 4...20 мА **пассивный**

	Контакт	Назначение
	1	GND (общий)
DB-9F	2	Момент 1
	3	Момент 2
(5 4 3 2 1)	4	
	5	B(D-)
	6	Обороты 1
	7	Обороты 2
	8	
	9	A(D+)

2.10 Подключение исполнительного устройства

При наличии у блока индикации встроенного реле, подключение исполнительного устройства к контактам реле должно быть выполнено по одной из схем на рис. 12, в зависимости от требуемого алгоритма работы реле. Номера контактов выходного разъема, соответствующие контактам K1-K4 реле приведены в таблицах 3 – 7.

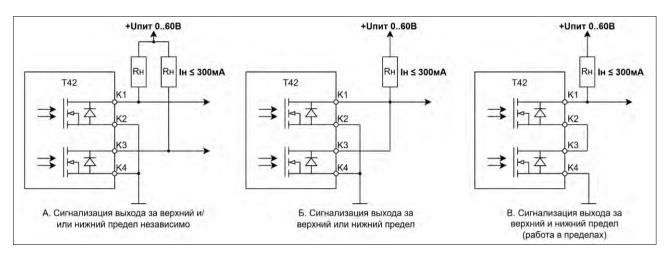


Рис. 12 – Схема включения исполнительного устройства

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Порядок работы

После выполнения электрических подключений, блок индикации готов к работе. Последовательными нажатиями кнопки « ■ » следует выбрать один из двух режимов отображения:

- 1) отображение крутящего момента, частоты вращения и механической мощности, передаваемой датчиком крутящего момента силы; для датчиков иного типа частота вращения и механическая мощность не отображаются;
- 2) отображение крутящего момента силы или иного измеряемого параметра, температуры датчика и его идентификационного номера;

Распознавание типа подключенного датчика, его идентификационного номера и диапазона измерений крутящего момента происходит автоматически.

ВНИМАНИЕ! Если на экране блока индикации отображаются символы «**M = 0**» – датчик не определен. Необходимо проверить целостность сигнального кабеля и наличие питания датчика и блока индикации. Если электрические соединения выполнены правильно, а на экране отображается «**M = 0**» - обратитесь к руководству по эксплуатации датчика.

Для измерения крутящего момента следует перевести блок индикации в режим отображения 1. Кнопкой «0/♦» установить «нулевое» значения крутящего момента **при полностью разгруженном датчике** – т.е. установить «0».

ВНИМАНИЕ! Нажатие на кнопку «0/♦» при нагруженном датчике приведет к смещению нулевой точки отсчета на величину приложенной к датчику нагрузки и ограничению диапазона измерения. Возврат предыдущего значения нуля возможен только при полной разгрузке датчика.

При достижении или превышении верхнего диапазона измерений датчика на индикаторе слева от измеряемой величины отображается символ «*». Появление символа «*», при действии крутящего момента, не превышающего верхнего предела измерительного диапазона, свидетельствует либо о неисправности датчика, либо о неправильной регулировке нуля датчика. Для выяснения причины следует полностью разгрузить датчик. Проверить правильность установки нуля датчика. Нажать на кнопку «0/♦» — значение момента на экране должно обнулится. Затем одновременно нажать кнопки «0/♦» и « ↑ ». Если итоговое показание превышает 5 % от верхнего предела измерения, датчик неисправен или установлен с перекосом.

Порядок работы блока индикации совместно с персональным компьютером или контроллером изложен в документе «Протокол обмена информацией для декодеров четвертого поколения», который доступен после установки ПО «Датчик» (подробнее см. «Руководство оператора ПО «Датчик») и на сайте www.tilkom.com в разделе «Программное обеспечение».

3.2 Работа с меню блока индикации Т42

Работа с меню блока индикации осуществляется при помощи кнопок на лицевой панели. Блок-схема меню просмотра измерений и параметров индикатора Т42 изображена на рис. 13. Блок-схема меню редактирования параметров индикатора Т42 изображена на рис. 14.

В режиме отображения измерений:

Кнопка «0/♦» – при подключенном датчике установка «0».

Кнопка « ↑ » – не используется;

Кнопка «■» – смена режима отображения, вход в меню просмотра измерений и параметров.

Одновременное нажатие кнопок « $0/\sqrt[4]{}$ » и « $\sqrt[4]{}$ » – сброс внесенной поправки «0».

В меню просмотра измерений и параметров:

Кнопка «0/♦» в разделах 1-го и 2-го уровня возвращает на начальный экран;

Кнопка « ↑ » входит в разделы меню;

Кнопка «■» пролистывает разделы или параметры меню.

Для входа в меню редактирования параметров

кнопка «^{0/}

* » в разделах 1-го и 2-го уровня возвращает на начальный экран; при выборе параметра изменяет значения вниз; в меню подтверждения сохранения – отменяет изменение параметра;

кнопка « ↑ » входит в разделы меню; при выборе параметра изменяет значения вверх;

кнопка « ■ » пролистывает разделы или параметры меню; если значения параметра изменилось предлагает сохранить; в меню подтверждения сохранения – сохраняет изменение параметра.

Для входа в меню редактирования параметров нажмите одновременно кнопки « ↑ » и «■ ».

ВНИМАНИЕ! Для применения новых настроек необходимо перезагрузить индикатор отключив и снова подключив кабель питания.

ВНИМАНИЕ! Некорректная установка параметров блока индикации может привести к неправильной работе комплекса, поэтому к работе с датчиком допускается персонал с соответствующей квалификацией и знакомый с общими правилами работы с измерительным электронным оборудованием.

3.2.1 Параметры индикатора

В разделе меню «**ИНТЕРФЕЙСЫ**» отображаются доступные интерфейсы для данного блока индикации.

В разделе меню «ПАР. ИЗМЕРЕНИЙ» доступно два подменю:

а) Подменю «ОБРАБОТКА» имеет следующие параметры:

 Φ о р м а т данных — тип данных, в котором передаются значения измеряемых величин (целочисленное или с плавающей запятой).

БВ фильтр — частота среза цифрового фильтра нижних частот Баттерворта для фильтрации входных данных.

Коэфф. усреднения — коэффициент усреднения измеряемой величины (скорость измерения 5000 изм./с).

Период изм. скорости — период времени, в течении которого ожидаются импульсы от датчика скорости перед усреднением.

Мин. скорость – предельная скорость, ниже которой измерения не производятся.

Реакция на сбой — определяет значение измеряемой величины на аналоговых и цифровых выходах при потере связи с датчиком.

б) Подменю «**ВЫВОД ДАННЫХ**» имеет следующие параметры:

Автостарт – автоматические начало измерений при включении датчика.

Потоковая перед. – включает режим потоковой передачи данных для устройств с протоколом TILKOM (подробнее смотрите в документе «Протокол обмена информацией для декодеров четвертого поколения»).

Верхняя граница — предел измеряемой величины при превышении которого на экране блока индикации отображается «↑», задается в % от верхнего предела измерений подключенного датчика.

Нижняя граница – предел измеряемой величины при снижении которого на экране блока индикации отображается «↓», задается в % от верхнего предела измерений подключенного датчика.

 Φ и к с а ц и я м а к с . — включение отображения во второй строке на экране блока индикации максимального значения измеренной величины за сессию. Для новой сессии необходимо разгрузить датчик и установить 0 кнопкой « $0/\psi$ ».

Коэфф. усред. 2 – коэффициент усреднения для отображения значения на экране блока индикации.

Калибровка – режим работы индикатора, при котором на цифровых и аналоговых выходах выдаются заданные значения измеряемой величины в % от верхнего предела измерений подключенного датчика.

Раздел меню «ПОПРАВКА» – ручной ввод смещения «0» для измеряемой величины.

3.2.2 Режим «КАЛИБРОВКА»

Режим «КАЛИБРОВКА» предназначен для настройки внешнего оборудования без создания нагрузки на датчик. Доступны следующие значения от номинального значения измеряемой величины (верхнего предела измерений):

- «Номинал-» «-100%»;
- «Половина-» «-50%»:
- 0
- «Половина+» «+50%»;
- «Номинал+» «+100%».

Заданное значение измеряемой величины выдается на цифровые и аналоговые выходы и отображается на экране блока индикации. При сохранении данного режима на экране блока индикации отображается «с» перед измеряемой величиной. Для перехода в нормальный режим работы с датчиком выберите «OFF» в подменю «Калибровка» и сохраните параметр.

4 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Блоки индикации T42 до введения их в эксплуатацию следует хранить на складах при температуре окружающего воздуха от 5 до 40°C и относительной влажности до 80% при температуре 25°C.

В помещении для хранения не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Транспортирование блоков индикации Т42 производится любым видом транспорта в закрытых транспортных средствах.

5 УТИЛИЗАЦИЯ

Блоки индикации Т42 не содержат опасных для жизни и вредных для окружающей среды веществ. Утилизация производится в порядке, принятом на предприятии-потребителе прибора.

6 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ

Блоки индикации Т42 не содержат драгметаллов.

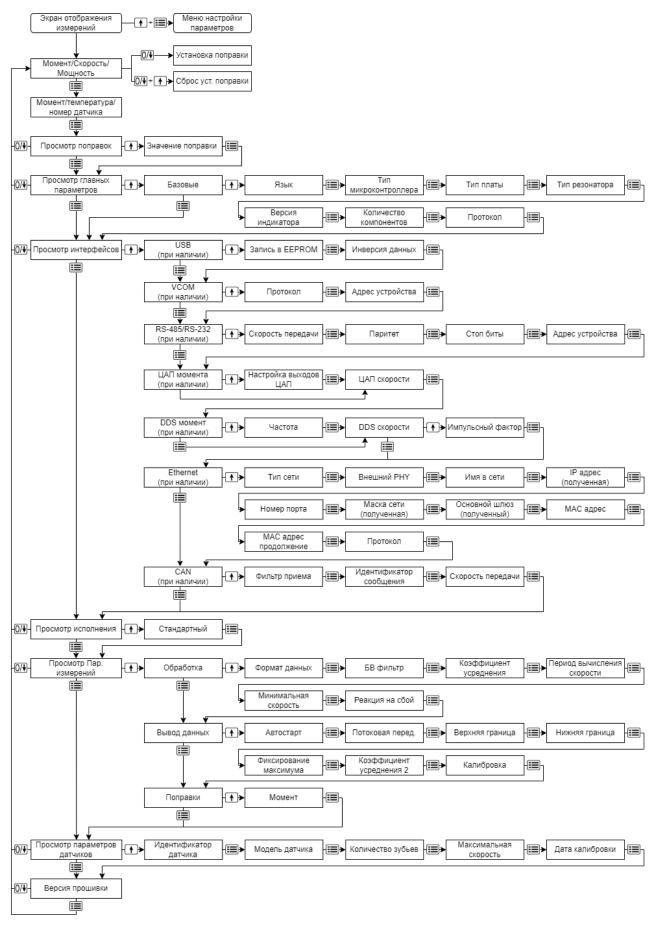


Рис. 13 – Блок-схема меню просмотра измерений и параметров

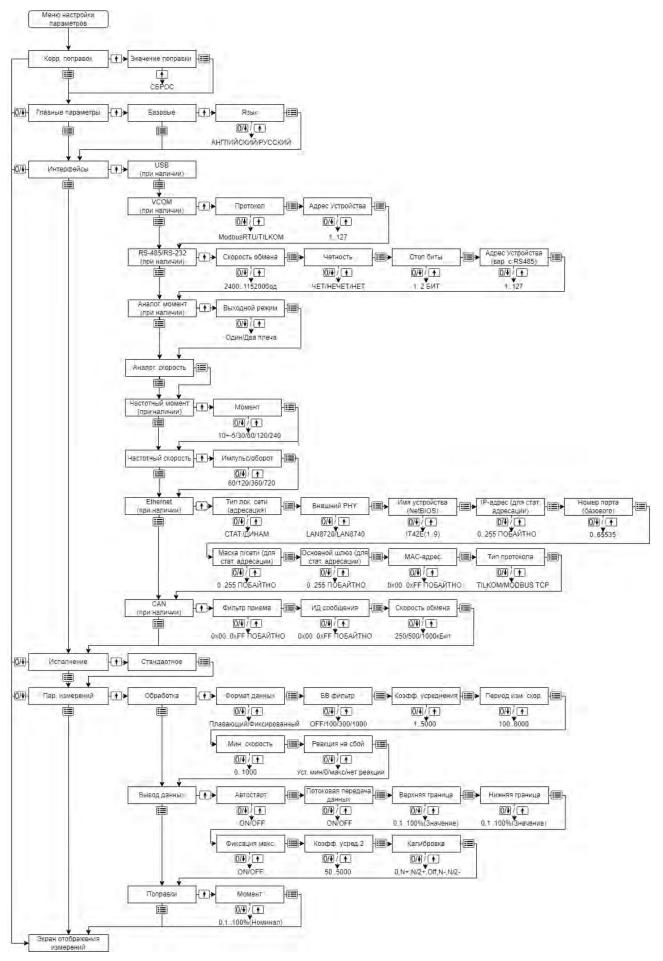


Рис. 14 — Блок-схема меню редактирования параметров

7 ОБОЗНАЧЕНИЕ МОДИФИКАЦИЙ

T42-X-XX-XX(H)

Т	т	Т	ТТ	
			Нестандартное исполнение	
		1	Код П5: исполнение корпуса	
П		-	А с фланцами	
1		1	В с креплением на DIN-рейку	
		F	Код П4: Реле пределов ¹⁾	
			Р присутствует	
		E	0 отсутствует (не указывается)	_
	К		П3: сигнал аналогового выхода канала частоты вращения)
		$\overline{}$	010 B ⁵⁾	
1	2	_	05 B ⁵⁾	
			420 мА активный ⁵⁾	
			420 мА пассивный ⁵⁾	
П		5	1 импульс на 1 оборот ротора	
	(3	X импульсов на 1 оборот ротора ⁶⁾	
	()	аналоговый выход канала частоты вращения отсутствует	_
	Код	П2	сигнал аналогового выхода канала крутящего момента 1)	
	_	±10) B	
	2	±5	В	
	3	4	20 мA активный ²⁾	
L	4	4	20 мА пассивный ³⁾	
	5	10:	£5 кГц (30±15 кГц, 60±30 кГц, 120±60 кГц, 240±120 кГц) ⁴⁾	
L	0	ана	алоговый выход канала крутящего момента отсутствует	_
од	Пар	аме	етр (П)1: вариант цифрового выхода	
1	USE			
2	USE	3-V	COM	
3	Ethe	erne	et .	
4	RS-	232		
5	RS-	485		
6	CAN	1		
0	Ци	ppo	вой выход отсутствует	

- 1) Недоступно если $\Pi 1 = 3$.
- 2) Если П2 = 3, П3 не может быть 4.
- 3) Если П2 = 4, П3 не может быть 3.
- 4) Частота выбирается пользователем в настройках блока индикации.
- 5) Частота вращения соответствующая верхней границе диапазона выбирается в настройках блока индикации.
- 6) Количество импульсов выбирается пользователем в настройках блока индикации из ряда 60, 120, 360, 720.

Примеры условных обозначений:

Блок индикации T42 с цифровым выходом «USB», без реле пределов, в корпусе с фланцами, стандартного исполнения:

Блок индикации Т42 без цифрового выхода, с аналоговым выходом канала крутящего момента «±10 В», с аналоговым выходом канала частоты вращения «1 импульс на 1 оборот ротора», с реле пределов, в корпусе с креплением на DIN-рейку, стандартного исполнения:

Блок индикации T42 с цифровым выходом RS-485, с аналоговым выходом канала крутящего момента «10±5 кГц», с аналоговым выходом канала частоты вращения «Х импульсов на 1 оборот ротора», с реле пределов, в корпусе с фланцами, стандартного исполнения:

T42-5-56-PA

